This robot uses AI-powered image processing to detect and follow a specified object. It features a webcam for real-time video capture, processed using the MobileNetSSD model on an NVIDIA Jetson Nano. When the object is detected, the robot moves towards it. If the object goes out of frame, the robot scans the last known direction and adjusts its movement accordingly. The project is developed in Python using the SMD Python Library.
The SMD acts as a bridge between the script and the modules. It is responsible for interpreting the commands sent by the script and translating them into actions that read input from the Ultrasonic Distance Sensor Module and meanwhile, actuate the motor for the continuous reading of the script.
The 100 RPM BDC Motor with Encoder is used to rotate the radar mechanism in a full circle. The user can precisely control the motor and get the position through the built-in encoder.
Servo Module
The Servo Module drives the servo motor that is connected to it. It can be controlled through the SMD libraries.
Key Features
• AI-Powered Object Tracking
Uses MobileNetSSD for real-time object detection and tracking.
• Jetson Nano Processing
Leverages NVIDIA Jetson Nano for high-performance image processing and AI applications.
• Autonomous Navigation
Moves toward the detected object and adjusts its path dynamically.
• Frame Scanning & Realignment
If the object is lost, the robot scans the last known direction and reorients itself.
• Real-Time Video Processing
Captures live video using a webcam and processes it for accurate object tracking.
• Servo-Controlled Head Movement
Uses a servo motor to adjust the camera’s position for better object detection.
• Python-Based Development
Developed using Python with the SMD Python Library for seamless integration with SMD modules.
Step 2: Assemble
1. Connect the Hardware:
• Attach the NVIDIA Jetson Nano to a stable base.
• Connect a USB Camera for real-time object detection.
• Connect the SMD Red via the USB Gateway Module to the Jetson Nano.
2. Motor and Servo Setup:
• Connect the 100 RPM BDC Motors with Encoders to the SMD motor ports.
• Attach a servo motor for camera movement and connect it to the SMD Red.
3. Wiring and Power:
• Connect the SMD Red to power using an appropriate battery or adapter.
• Ensure all RJ-45 cables are securely connected for proper communication.
4. Software Installation:
• Install required libraries on Jetson Nano: OpenCV, SMD Python Library, and MobileNetSSD model.
• Grant USB access permissions using sudo chmod a+rw /dev/ttyUSB0.
5. Final Check:
• Verify all connections and ensure the camera and motors are properly aligned.
• Power on the system and prepare for testing and calibration.
Project Wiring Diagram
Step 3: Run & Test
1. Power On the System:
• Ensure the Jetson Nano, SMD Red, and motors are properly powered.
• Check all cable connections before proceeding.
2. Start the Object Detection Script:
• Run the Python script on Jetson Nano
• The camera will start detecting the specified object in real-time.
3. Verify Motor Responses:
• If the object is detected, the robot should start moving towards it.
• If the object moves, the robot should adjust its direction accordingly.
• If the object is out of frame, the servo will scan in the last known direction.
4. Test Object Tracking:
• Move the tracked object around to test responsiveness.
• Adjust PID parameters if needed for better accuracy.
5. Debug & Fine-Tune:
• If the robot doesn’t move correctly, check the motor wiring and power supply.
• If detection is inaccurate, adjust the confidence threshold (--thr parameter).
6. Record & Analyze Performance:
• The camera feed and robot’s movements are logged and recorded for analysis.
• Optimize speed and turning sensitivity based on test results.
Codes
#Import the neccesary libraries
import argparse
import cv2
from smd.red import *
import os
# Construct the argument parse
parser = argparse.ArgumentParser(
description='Script to run object detection network')
parser.add_argument("--prototxt", default = "MobileNetSSD.prototxt",
help = 'Path to text network file')
parser.add_argument("--weights", default="MobileNetSSD.caffemodel",
help='Path to weights')
parser.add_argument("--thr", default=0.2, type=float, help="Confidence threshold to filter out weak detections")
parser.add_argument("--close", default=0.35, type=float, help="How much robot is getting close. Lower values robot will stop further away")
parser.add_argument("--object", default='person', help="What object robot should follow. Objects are:"
"background, aeroplane, bicycle, bird, boat, bottle, bus, "
"car, cat, chair, cow, diningtable, dog, horse, motorbike, person, "
"pottedplant, sheep, sofa, train, tvmonitor")
args = parser.parse_args()
# Labels of Network.
classNames = { 0: 'background',
1: 'aeroplane', 2: 'bicycle', 3: 'bird', 4: 'boat',
5: 'bottle', 6: 'bus', 7: 'car', 8: 'cat', 9: 'chair',
10: 'cow', 11: 'diningtable', 12: 'dog', 13: 'horse',
14: 'motorbike', 15: 'person', 16: 'pottedplant',
17: 'sheep', 18: 'sofa', 19: 'train', 20: 'tvmonitor' }
# Open camera device.
cap = cv2.VideoCapture(0)
cap.set(cv2.CAP_PROP_BUFFERSIZE, 1)
frame_width = int(cap.get(3))
frame_height = int(cap.get(4))
size = (frame_width, frame_height)
result = cv2.VideoWriter('recording.avi', cv2.VideoWriter_fourcc(*'MJPG'), 5, size)
#Load the Caffe model
net = cv2.dnn.readNetFromCaffe(args.prototxt, args.weights)
usb_port = "/dev/ttyUSB0"
# We need to read and write data to usb port jetson nano normally doesn't allow it
os.system('sudo chmod a+rw ' + usb_port)
class Robot:
def __init__(self):
# SMD setup
self.port = usb_port
self.m = Master(self.port)
self.m.attach(Red(0))
self.m.attach(Red(1))
self.m.set_connected_modules(0,["Servo_1"])
self.servo_pos = 90 #Current servo position
self.last_error = 0 #Last error of motors used for PID
self.las_dir = 0 #Last direction object is detected
self.last_error_servo = 0 #Last error of servo used for PID
# Motor setup
# SMD 0 is left motor
# SMD 1 is right motor
self.m.set_shaft_cpr(0, 6533)
self.m.set_shaft_rpm(0, 100)
self.m.set_shaft_cpr(1, 6533)
self.m.set_shaft_rpm(1, 100)
self.m.set_operation_mode(0, OperationMode.Velocity)
self.m.set_operation_mode(1, OperationMode.Velocity)
self.m.enable_torque(0, True)
self.m.enable_torque(1, True)
self.m.set_servo(0, 1, 90)
# Robot parameters
self.rpm_left = 0 # Initial RPM for the left motor
self.rpm_right = 0 # Intial RPM for the right motor
# Drives the motors given error
def motor_drive(self, error):
kp = 0.2
kd = 0.1
# PID calculation for motors max 100 min -100
self.rpm_left = min(100,max(-100,int(kp*error + 80 + kd*(self.last_error - error))))
self.rpm_right = min(100,max(-100,int(-kp * error + 80 - kd*(self.last_error - error))))
self.last_error = error
# Motor speeds
print("left speed:{},right speed:{}".format(self.rpm_left, self.rpm_right))
self.m.set_velocity(1, self.rpm_left)
self.m.set_velocity(0, -self.rpm_right)
# Stops the motors
def stop(self):
self.m.set_velocity(1,0)
self.m.set_velocity(0,0)
#Calculates ratio between frame and the total are of object used for estimateing distance to object
def calc_object_ratio_to_frame(self, xl, xr, yl, yr):
return ((xr - xl) * (yr - yl))/(640*480)
# AI object detection
def detect(self):
# Capture frame-by-frame
ret, frame = cap.read()
frame_resized = cv2.resize(frame,(300,300)) # Resize frame for prediction
# We perform a mean subtraction (127.5, 127.5, 127.5) to normalize the input;
# after executing this command our "blob" now has the shape: (1, 3, 300, 300)
blob = cv2.dnn.blobFromImage(frame_resized, 0.007843, (300, 300), (127.5, 127.5, 127.5), False)
# Set to network the input blob
net.setInput(blob)
# Prediction of network
detections = net.forward()
# Size of frame resize (300x300)
cols = frame_resized.shape[1]
rows = frame_resized.shape[0]
# For get the class and location of object detected,
# There is a fix index for class, location and confidence
# value in @detections array .
for i in range(detections.shape[2]):
confidence = detections[0, 0, i, 2] #Confidence of prediction
if confidence > args.thr: # Filter prediction
class_id = int(detections[0, 0, i, 1]) # Class label
# Object location
xLeftBottom = int(detections[0, 0, i, 3] * cols)
yLeftBottom = int(detections[0, 0, i, 4] * rows)
xRightTop = int(detections[0, 0, i, 5] * cols)
yRightTop = int(detections[0, 0, i, 6] * rows)
# Factor for scale to original size of frame
heightFactor = frame.shape[0]/300.0
widthFactor = frame.shape[1]/300.0
# Scale object detection to frame
xLeftBottom = int(widthFactor * xLeftBottom)
yLeftBottom = int(heightFactor * yLeftBottom)
xRightTop = int(widthFactor * xRightTop)
# Draw rectangle and name of the object to the frame
yRightTop = int(heightFactor * yRightTop)
if class_id in classNames:
label = classNames[class_id] + ": " + str(confidence)
labelSize, baseLine = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)
yLeftBottom = max(yLeftBottom, labelSize[1])
cv2.rectangle(frame, (xLeftBottom, yLeftBottom), (xRightTop, yRightTop),(0, 255, 0))
cv2.rectangle(frame, (xLeftBottom, yLeftBottom - labelSize[1]),
(xLeftBottom + labelSize[0], yLeftBottom + baseLine),
(255, 255, 255), cv2.FILLED)
cv2.putText(frame, label, (xLeftBottom, yLeftBottom),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0))
# Save the frame for the video
result.write(frame)
# Check if object is what we are looking for
if classNames[class_id] == args.object:
return class_id, confidence, yRightTop, yLeftBottom, xRightTop, xLeftBottom
# If we don't find our object return 0's
return 0,0,0,0,0,0
# Look for object using the servo in the latest direction object is detected
def look_for_object(self, dir):
self.m.set_servo(1, 5, 120)
if dir == 0:
for i in reversed(range(0,10)):
class_id, confidence, yRightTop, yLeftBottom, xRightTop, xLeftBottom = self.detect()
if confidence != 0 and classNames[class_id] == args.object:
return i*10
self.m.set_servo(0,1,i*10)
while True:
for i in range(0,19):
class_id, confidence, yRightTop, yLeftBottom, xRightTop, xLeftBottom = self.detect()
if confidence != 0 and classNames[class_id] == args.object:
return i*10
self.m.set_servo(0,1,i*10)
for i in reversed(range(0,19)):
class_id, confidence, yRightTop, yLeftBottom, xRightTop, xLeftBottom = self.detect()
if confidence != 0 and classNames[class_id] == args.object:
return i*10
self.m.set_servo(0,1,i*10)
else:
for i in range(9,19):
class_id, confidence, yRightTop, yLeftBottom, xRightTop, xLeftBottom = self.detect()
if confidence != 0 and classNames[class_id] == args.object:
return i*10
self.m.set_servo(0,1,i*10)
while True:
for i in reversed(range(0,19)):
class_id, confidence, yRightTop, yLeftBottom, xRightTop, xLeftBottom = self.detect()
if confidence != 0 and classNames[class_id] == args.object:
return i*10
self.m.set_servo(0,1,i*10)
for i in range(0,19):
class_id, confidence, yRightTop, yLeftBottom, xRightTop, xLeftBottom = self.detect()
if confidence != 0 and classNames[class_id] == args.object:
return i*10
self.m.set_servo(0,1,i*10)
# Turn the body of the robot to the specifed degree
def turn(self, deg):
d = 0.5
deg -= 90
self.m.set_velocity(0, deg*d)
self.m.set_velocity(1, deg*d)
self.m.set_servo(0, 1, 95)
self.servo_pos = 95
time.sleep(1)
self.m.set_velocity(0, 0)
self.m.set_velocity(1, 0)
# If a object is close track it with only the servo
def track_object_close(self, error):
kp = 0.02
kd = 0.001
# PID calculation for servo amx 180 min 0
change = kp*error + kd*(self.last_error_servo - error)
self.servo_pos = min(180, max(0, self.servo_pos + change))
self.last_error_servo = error
# Servo position
print(f"Servo:{self.servo_pos}")
self.m.set_servo(0, 1, int(self.servo_pos))
# If object is getting out of frame turn the body
if self.servo_pos > 95:
self.las_dir = 1
else:
self.las_dir = 0
if self.servo_pos > 160:
self.turn(self.servo_pos)
elif self.servo_pos < 20:
self.turn(self.servo_pos)
# Main loop of our object
def run(self):
while True:
# Object detection
class_id, confidence, yRightTop, yLeftBottom, xRightTop, xLeftBottom = self.detect()
# If no object is detected look for it
if confidence == 0:
self.stop()
deg = self.look_for_object(self.las_dir)
self.turn(deg)
continue
# Calculates the error, error is difference between left and right contours to the frame lenght
rightDif = 640 - xRightTop
leftDif = xLeftBottom
error = rightDif - leftDif
ratio = self.calc_object_ratio_to_frame(xLeftBottom,xRightTop,yLeftBottom,yRightTop)
# Error is multiplied with ratio to make robot take faster turns at close and slower at distance
error *= ratio
# Determine if object is left or right from the error
if error > 0:
self.las_dir = 1
else:
self.las_dir = 0
# If object is close enough stop and start tracking
if ratio < args.close:
self.m.set_servo(0, 1, 95)
self.motor_drive(error)
else:
self.stop()
self.track_object_close(error/ratio)
robo = Robot()
try:
robo.run()
except KeyboardInterrupt:
robo.stop()
cap.release()
result.release()